Compressed sensing (CS) MRI has shown great potential in enhancing time efficiency. Deep learning techniques, specifically generative adversarial networks (GANs), have emerged as potent tools for speedy CS-MRI reconstruction. Yet, as the complexity of deep learning reconstruction models increases, this can lead to prolonged reconstruction time and challenges in achieving convergence. In this study, we present a novel GAN-based model that delivers superior performance without the model complexity escalating. Our generator module, built on the U-net architecture, incorporates dilated residual (DR) networks, thus expanding the network’s receptive field without increasing parameters or computational load. At every step of the downsampling path, this revamped generator module includes a DR network, with the dilation rates adjusted according to the depth of the network layer. Moreover, we have introduced a channel attention mechanism (CAM) to distinguish between channels and reduce background noise, thereby focusing on key information. This mechanism adeptly combines global maximum and average pooling approaches to refine channel attention. We conducted comprehensive experiments with the designed model using public domain MRI datasets of the human brain. Ablation studies affirmed the efficacy of the modified modules within the network. Incorporating DR networks and CAM elevated the peak signal-to-noise ratios (PSNR) of the reconstructed images by about 1.2 and 0.8 dB, respectively, on average, even at 10× CS acceleration. Compared to other relevant models, our proposed model exhibits exceptional performance, achieving not only excellent stability but also outperforming most of the compared networks in terms of PSNR and SSIM. When compared with U-net, DR-CAM-GAN’s average gains in SSIM and PSNR were 14% and 15%, respectively. Its MSE was reduced by a factor that ranged from two to seven. The model presents a promising pathway for enhancing the efficiency and quality of CS-MRI reconstruction.