2021
DOI: 10.3390/math9202612
|View full text |Cite
|
Sign up to set email alerts
|

Compression of Neural Networks for Specialized Tasks via Value Locality

Abstract: Convolutional Neural Networks (CNNs) are broadly used in numerous applications such as computer vision and image classification. Although CNN models deliver state-of-the-art accuracy, they require heavy computational resources that are not always affordable or available on every platform. Limited performance, system cost, and energy consumption, such as in edge devices, argue for the optimization of computations in neural networks. Toward this end, we propose herein the value-locality-based compression (VELCRO… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 33 publications
0
0
0
Order By: Relevance