The fully dynamical motion of a phase boundary is considered for a specific class of elastic materials whose stress-strain relation in simple shear is nonmonotone. It is shown that a preexisting stationary phase boundary in a prestressed layer composed of such a material can be set in motion by a finite amplitude shear pulse. An infinity of solutions is possible according to the present theory, each of which is characterized by different reflected and transmitted waves at the phase boundary. A global analysis gives exact bounds on the size of the solution family for different shear pulse amplitudes. For certain ranges of shear pulse amplitudes a completely reflecting solution will exist, while for an in general different range of shear pulse amplitudes a completely transmitting solution will exist. The properties of these different solutions are examined. In particular, it is observed that the ringing of a shear pulse between the external boundaries and the internal phase boundary gives rise to periodic phase boundary motion for both the case of a completely reflecting phase boundary and a completely transmitting phase boundary.