The Steel-fiber reinforced polymer (FRP) composite bar (SFCB) is a recently proposed bar, it has a steel inner and an exterior layer of FRP, and an adhesive resin to bond the two materials. The SFCB bar used in this paper was made by using a handmade technique; this technique includes a manufacturing procedure that was described in this paper. SFCBs were tested using the standard uniaxial tensile test (ASTM A370) to figure out their mechanical properties and stress-strain relationship and compare them with the normal steel bars. Moreover, the bonding test was conducted to comprehend the bonding performance of SFCB in the concrete and to compare it with the normal steel performance, the bonding test was conducted according to ACI 440.3R-12. The experimental results illustrated that the values of yielding and ultimate tensile strengths of SFCB were slightly less than that of the conventional steel with percentages of 4% for both, the modulus of elasticity values which were found theoretically in good agreement with the test results values, the behavior of SFCB stress-strain curve was slightly different than the conventional steel behavior, with a stable post-yield modulus. Also, the results showed that the SFCB/Steel (SFCB/Steel) ratio between the bond strength of SFCB and the bond strength of steel bar was approximately 0.86, which means that the SFCB had lesser bond strengths than the normal steel with a percentage of 14%, the results also showed that the SFCB had less slip than the steel bar with a percentage of 10%.