This work combines compressive sensing and short word-length techniques to achieve localization and target tracking in wireless sensor networks with energy-efficient communication between the network anchors and the fusion center. Gradient descent localization is performed using time-of-arrival (TOA) data which are indicative of the distance between anchors and the target thereby achieving range-based localization. The short word-length techniques considered are delta modulation and sigma-delta modulation. The energy efficiency is due to the reduction of the data volume transmitted from anchors to the fusion center by employing any of the two delta modulation variants with compressive sensing techniques. Delta modulation allows the transmission of one bit per TOA sample. The communication energy efficiency is increased by RⱮ, R≥1, where R is the sample reduction ratio of compressive sensing and Ɱ is the number of bits originally present in a TOA-sample word. It is found that the localization system involving sigma-delta modulation has a superior performance to that using delta-modulation or pure compressive sampling alone, in terms of both energy efficiency and localization error in the presence of TOA measurement noise, owing to the noise shaping property of sigma-delta modulation.