In this study, the fresh properties of self-compacting concrete (SCC) incorporating ground waste glass (GWG) as cementing material were experimentally investigated. GWG was used as a partial replacement for cement at replacement levels of 0, 5, 10, 15, 20, 25 and 30% by weight. Reducing the consumption of cement in construction is a major issue in terms of economic performance. Such reduction would also contribute to the environment by lessening the harmful impact of the manufacturing process. Concrete mixtures containing different levels of GWG were prepared with the water to cementitious materials ratio of 0.51. The examined properties included workability, wet density, air content and setting time. Workability of the fresh concrete was determined by using the slump flow, visual stability index, V-funnel, J-ring, L-box and GTM screen stability tests. The results indicate that there is a slight decrease in the wet density of self-compacting ground waste glass concrete (SCGWGC) of nearly 1.37% with the increase of GWG content. The conclusion is that using GWG significantly increases the workability of SCC mixtures. As the GWG increases, the slump flow also increases at a constant amount of water and super-plasticizer, but the concrete flow time decreases. The results showed that it is possible to successfully produce SCC with GWG as cement replacement.