Compressor‐Driven Titanium and Magnesium Hydride Systems for Thermal Energy Storage: Thermodynamic Assessment
Uday Raj Singh,
Satya Sekhar Bhogilla,
Wang Jiawei
et al.
Abstract:Metal hydrides enable excellent thermal energy storage due to their high energy density, extended storage capability, and cost‐effective operation. A metal hydride‐driven storage system couples two reactors that assist in thermochemical storage using cyclic operation. Metal hydride reactors, operating at both low and high temperatures, serve for the storage of hydrogen and thermal energy, respectively. The integration of efficient thermal energy storage technology is known to enhance the efficiency of solar th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.