We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259 -4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61 homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61 is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By coimmunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61 component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of mRNA. Although the exact mechanism remains to be elucidated, the exocyst/Sec61 interaction represents an important link between the cellular membrane trafficking and protein synthetic machinery.