2019
DOI: 10.48550/arxiv.1910.09258
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Computability in partial combinatory algebras

Abstract: We prove a number of elementary facts about computability in partial combinatory algebras (pca's). We disprove a suggestion made by Kreisel about using Friedberg numberings to construct extensional pca's. We then discuss separability and elements without total extensions. We relate this to Ershov's notion of precompleteness, and we show that precomplete numberings are not 1-1 in general.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?