We investigate the computability of thermodynamic invariants at zero temperature for one-dimensional subshifts of finite type. In particular, we prove that the residual entropy (i.e., the joint ground state entropy) is an upper semi-computable function on the space of continuous potentials, but it is not computable. Next, we consider locally constant potentials for which the zerotemperature measure is known to exist. We characterize the computability of the zero-temperature measure and its entropy for potentials that are constant on cylinders of a given length k. In particular, we show the existence of an open and dense set of locally constant potentials for which the zero-temperature measure can be computationally identified as an elementary periodic point measure. Finally, we show that our methods do not generalize to treat the case when k is not given.