This version is available at https://strathprints.strath.ac.uk/53416/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Abstract-As a recent approach for time series analysis, singular spectrum analysis (SSA) has been successfully applied for feature extraction in hyperspectral imaging (HSI), leading to increased accuracy in pixel-based classification tasks. However, one of the main drawbacks of conventional SSA in HSI is the extremely high computational complexity, where each pixel requires individual and complete singular value decomposition (SVD) analysis. To address this issue, a fast implementation of SSA (F-SSA) is proposed for efficient feature extraction in HSI. Rather than applying pixel-based SVD as conventional SSA does, the fast implementation only needs one SVD applied to a representative pixel, i.e. either the median or the mean spectral vector of the HSI hypercube. The result of SVD is employed as a unique transform matrix for all the pixels within the hypercube. As demonstrated in experiments using two well-known publicly available data sets, almost identical results are produced by the fast implementation in terms of accuracy of data classification, using the support vector machine (SVM) classifier. However, the overall computational complexity has been significantly reduced.