2016
DOI: 10.1186/s13634-016-0418-z
|View full text |Cite
|
Sign up to set email alerts
|

Computation-distributed probability hypothesis density filter

Abstract: Particle probability hypothesis density filtering has become a promising approach for multi-target tracking due to its capability of handling an unknown and time-varying number of targets in a nonlinear, non-Gaussian system. However, its computational complexity linearly increases with the number of obtained observations and the number of particles, which can be very time consuming, particularly when numerous targets and clutter exist in the surveillance region. To address this issue, we present a distributed … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?