Transformers, one of the most important elements of energy transmission and distribution systems, can be produced as a result of high cost and long-term studies. It is necessary to know the mechanical, electrical and magnetic properties of a transformer in the manufacturing process. Modeling of the transformers to be designed with a reliable simulation program in order to operate at targeted values and efficiency is important in terms of ensuring test criteria and minimizing the problems that may arise later. Thanks to advanced computer techniques, it is possible to identify design errors and correct them through a simulation program. In this paper, ANSYS Maxwell 3D software based on Finite Element Method (FEM) and widely used in transformer simulation was used. With this program, it is aimed to investigate the magnetic field density, magnetic field intensity, magnetic flux lines, current density values in the coil and core of the transformer and the effects of these values on transformer losses. Considering the nominal values of the single phase 90 VA transformer, its electrical and physical values were measured by experimental studies in the laboratory environment, and the necessary parameters and values were calculated based on these measurements. The theoretically calculated values are compared with the experimental study results and the values calculated with ANSYS Maxwell program. It was observed that the experimental study results and the results of the model created in the program confirmed each other.