For nonlinear DAEs, we can hardly make a reasonable statement unless structural assumptions are given. Many results are restricted to explicit DAEs, often in Hessenberg form of order up to three. For the DAEs resulting from circuit simulation, different beneficial structures have been found and exploited for the computation of consistent initial values. In this paper, a class of DAEs in nonlinear Hessenberg form of arbitrary high order is defined and analyzed with regard to consistent initialization. For this class of DAEs, the hidden constraints can be systematically described and the consistent initialization can be determined step-by-step solving linear subproblems, an approach hitherto used for the DAEs resulting from circuit simulation. Finally, it is shown that the DAEs resulting from mechanical systems fulfill the defined structural assumptions. The algorithm is illustrated by several examples.