Theoretical investigation of the onset voltage of negative corona on stranded conductors is described in this paper. The method of calculation is based on the criterion developed for the formation of repetitive negative corona Trichel pulses. This calls at first for an accurate calculation of the electric field in the vicinity of stranded conductors. The investigated gap is a three-dimensional field problem. To solve this problem, a new modification of the charge simulation technique is presented, where the simulation charges are helical of infinite length. Laboratory measurements of the onset voltage on stranded conductors are carried out to check the accuracy of the present calculations. The effects of varying the field nonuniformity on the onset voltage values are investigated. The calculated onset voltage values for stranded conductors agree satisfactorily with those measured experimentally.