Quantum mechanics could be studied through polynomial algebra, as has been demonstrated by a work (“An approach to first-principles electronic structure calculation by symbolic-numeric computation” by A. Kikuchi). We carry forward the algebraic method of quantum mechanics through algebraic number theory; the basic equations are represented by the multivariate polynomial ideals; the symbolic computations process the ideal and disentangle the eigenstates as the algebraic variety; upon which one canbuild the Galois extension of the number field, in analogy with the univariate polynomial case, to investigate the hierarchy of solutions; the Galois extension is accompanied with the group operations, which permute the eigenstates from one to another, and furnish the quantum system with a non-apparent symmetry. Besides, this sort of algebraic quantum mechanics is an embodiment of the class field theory; some of the important consequences of the latter emerge in quantum mechanics. We shall demonstrate these points through simple models; we will see the use of computational algebra facilitates such sort of analysis, which might often be complicated if we try to solve them manually.