In this study, the propagation and evolution characteristics of internal solitary waves on slope topography in stratified fluids were investigated. A numerical model of internal solitary wave propagation based on the nonlinear potential flow theory using the multi-domain boundary element method was developed and validated. The numerical model was used to calculate the propagation process of internal solitary waves on the topography with different slope parameters, including height and angle, and the influence of slope parameters, initial amplitude, and densities jump of two-layer fluid on the evolution of internal solitary waves is discussed. It was found that the wave amplitude first increased while climbing the slope and then decreased after passing over the slope shoulder based on the calculation results, and the wave amplitude reached a maximum at the shoulder of the slope. A larger height and angle of the slope can induce larger maximum wave amplitude and more obvious tail wave characteristics. The wave amplitude gradually decreased, and a periodic tail wave was generated when propagating on the plateau after passing the slope. Both frequency and height of the tail wave were affected by the geometric parameters of the slope bottom; however, the initial amplitude of the internal solitary wave only affects the tail wave height, but not the frequency of the tail wave.