In this work, experimental and computational approach is used to understand the corrugation attitude of a bio-inspired dragonfly mimicked corrugated airfoil at low Reynolds number varying from 15000 to 75000 to understand the advantages of pleated corrugated airfoil. The CFD analysis is carried out on the 2-dimensional bio-mimetic corrugated ‘Pantala flavescens’ dragonfly forewing to predict the aerodynamic characteristics of the corrugated dragonfly aerofoil with varying angle of attack from 0° to 8°. The computational analysis of the wing profile is done using the ANSYS-19 ICEM CFD and FLUENT software. For the experimental test, the model is printed in 3-D printer machine and tested in subsonic Wind Tunnel at different speeds and different angle of attacks using a wind tunnel 6-component balance. The computational simulation reveals the exemplary results of the pleated airfoil (corrugated aerofoil) with new design constraints. Finally, the computational result is validated with experimental results.