This work presents a finite-element-based numerical formulation to evaluate the nonlinear deflections of magneto-electro-elastic sandwich skew plates with a viscoelastic core and functionally graded carbon nanotube-reinforced magneto-electro-elastic face sheets. Meanwhile, the proposed formulation accommodates the geometrical skewness as well. The magneto-electro-elastic sandwich skew plate is operated in the thermal environment and subjected to various multiphysics loads, including electric and magnetic loads. The viscoelastic core is modelled via the complex modulus approach. Two different forms of viscoelastic cores, such as Dyad 606 and EC 2216, are considered in this study. Also, different thickness configurations of core and facing arrangements are taken into account. The plate kinematics is presumed through higher-order shear deformation theory, and von Karman's nonlinear strain displacement relations are incorporated. The global equations of motion are arrived at through the total potential energy principle and solved via the direct iterative method. Special attention is paid to assessing the influence of pyroeffects, coupling fields and electromagnetic boundary conditions on the nonlinear deflections of magneto-electro-elastic sandwich plates working in the thermal environment and subjected to electromagnetic loads, which is the first of its kind. Also, parametric studies dealing with the skew angles, carbon nanotube distributions and volume fractions, thickness ratio, and aspect ratio have been discussed. The results of this work are believed to be unique and serve as a guide for the design engineers towards developing sophisticated smart structures for various engineering applications.