Interactions among optical solitons can be used to develop photonic information processing devices such as all-optical switches and all-optical logic gates. It is the key to achieve high-speed, high-capacity all-optical networks and optical computers, which is also important in academy. We study the properties of all-optical switches of optical solitons in birefringent fibers, based on the coupled nonlinear Schrödinger equations. It is found that under different initial conditions we can achieve all-optical switching functions. We also study the influence of different physical parameters of birefringent fibers on all-optical soliton switching. The relevant conclusions are conducive to achieving the all-optical switching function of optical solitons in birefringent fibers, providing useful guidance for widespread applications of optical soliton all-optical switches in birefringent fibers of communications.