“…Over the past decade, dozens of machine learning-based computational approaches have been proposed to identify different types of secreted effectors ( Zeng and Zou, 2019 ), including support vector machine (SVM) ( Samudrala et al, 2009 ; Yang et al, 2010 ; Wang et al, 2011 , 2014 , 2017 ; Dong et al, 2013 ; Zou et al, 2013 ; Goldberg et al, 2016 ; Esna Ashari et al, 2019a , b ), random forest (RF) ( Yang et al, 2013 ), artificial neural network (ANN) ( Löwer and Schneider, 2009 ), naive Bayes (NB) ( Arnold et al, 2009 ), hidden Markov model (HMM) ( Xu et al, 2010 ; Lifshitz et al, 2013 ; Wang et al, 2013 ), logistic regression (LR) ( Esna Ashari et al, 2018 ), decision tree (DT) ( Wang et al, 2019a ), gradient boosting ( Chen et al, 2020 ), deep learning (DL) ( Xue et al, 2018 , 2019 ; Açıcı et al, 2019 ; Fu and Yang, 2019 ; Hong et al, 2020 ; Li et al, 2020a ), and their ensemble methods ( Burstein et al, 2009 ; Hobbs et al, 2016 ; Wang et al, 2018 , 2019b ; Xiong et al, 2018 ; Li et al, 2020b ). Some of these methods have achieved relatively high predictive accuracy, while they can recognize only one type of secreted effector, such as SIEVE ( Samudrala et al, 2009 ), EffectiveT3 ( Arnold et al, 2009 ), T3_MM ( Wang et al, 2013 ), GenSET ( Hobbs et al, 2016 ), Bastion3 ( Wang et al, 2019a ), DeepT3 ( Xue et al, 2019 ), WEDeepT3 ( Fu and Yang, 2019 ), ACNNT3 ( Li et al, 2020a ), and EP3 ( Li et al, 2020b ) for T3SEs; T4EffPred ( Zou et al, 2013 ), T4SEpre ( Wang et al, 2014 ), DeepT4 ( Xue et al, 2018 ), PredT4SE-Stack ( Xiong et al, 2018 ), Bastion4 ( Wang et al, 2019b ), T4SE-XGB ( Chen et al, 2020 ), and CNN-T4SE ( Hong et al, 2020 ) for T4SEs; and Bastion6 ( Wang et al, 2018 ) for T6SEs. It is important to n...…”