Abstract. Much debate has centred on whether continental break-up is predominantly caused by active upwelling in the mantle (e.g. plumes) or by long-range extensional stresses in the lithosphere. We propose the hypothesis that global supercontinent break-up events should always involve both. The fundamental principle involved is the conservation of mass within the spherical shell of the mantle, which requires a return flow for any major upwelling beneath a supercontinent. This shallow horizontal return flow away from the locus of upwelling produces extensional stress. We demonstrate this principle with numerical models, which simultaneously exhibit both upwellings and significant lateral flow in the upper mantle. For non-global break-up the impact of the finite geometry of the mantle will be less pronounced, weakening this process. This observation should motivate future studies of continental break-up to explicitly consider the global perspective, even when observations or models are of regional extent.