Artificial intelligence is demonstrated by machines, unlike the natural intelligence displayed by animals, including humans. Artificial intelligence research has been defined as the field of study of intelligent agents, which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals. The techniques of intelligent computing solve many applications of mathematical modeling. The research work was designed via a particular method of artificial neural networks to solve the mathematical model of coronavirus. The representation of the mathematical model is made via systems of nonlinear ordinary differential equations. These differential equations are established by collecting the susceptible, the exposed, the symptomatic, super spreaders, infection with asymptomatic, hospitalized, recovery, and fatality classes. The generation of the coronavirus model's dataset is exploited by the strength of the explicit Runge Kutta method for different countries like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, validation, and testing processes for each cyclic update in Bayesian Regularization Backpropagation for the numerical treatment of the dynamics of the desired model. The performance and effectiveness of the designed methodology are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.