We implement an efficient method of computation of two dimensional Fourier-type integrals based on approximation of the integrand by Gaussian radial basis functions, which constitute a standard tool in approximation theory. As a result, we obtain a rapidly converging series expansion for the integrals, allowing for their accurate calculation. We apply this idea to the evaluation of diffraction integrals, used for the computation of the through-focus characteristics of an optical system.We implement this method and compare its performance in terms of complexity, accuracy and execution time with several alternative approaches, especially with the extended Nijboer-Zernike theory, which is also outlined in the text for the reader's convenience. The proposed method yields a reliable and fast scheme for simultaneous evaluation of such kind of integrals for several values of the defocus parameter, as required in the characterization of the through-focus optics.