2022
DOI: 10.1613/jair.1.13326
|View full text |Cite
|
Sign up to set email alerts
|

Computational Benefits of Intermediate Rewards for Goal-Reaching Policy Learning

Abstract: Many goal-reaching reinforcement learning (RL) tasks have empirically verified that rewarding the agent on subgoals improves convergence speed and practical performance. We attempt to provide a theoretical framework to quantify the computational benefits of rewarding the completion of subgoals, in terms of the number of synchronous value iterations. In particular, we consider subgoals as one-way intermediate states, which can only be visited once per episode and propose two settings that c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 41 publications
0
0
0
Order By: Relevance