In recent years, we have been studying approaches to the realistic modeling of natural systems, especially biological systems. We have tested several of these in a project devoted to modeling pancreatic organogenesis, a complex system that dynamically promotes structural and molecular development. Here, we describe one of these approaches-a kind of 'divide and conquer' technique, in which the system is disassembled into modules to specify behaviors on the scale of the organ (i.e., morphogenesis) and the cell (i.e., molecular interactions). At run-time, these modules are re-assembled to direct development in individual cells. This approach employs multi-scaling and dynamics, two important characteristics of natural systems, but avoids cross-scaling. It thus appears to be useful for systems in which the importance of cross-scaling seems to be less significant, such as the development of phyllotaxis in plants. In pancreatic organogenesis, cross-scaling was found to be a significant characteristic, and thus by using 'divide and conquer' we could cover only its preliminary stages. We discuss the approach and our use of it, as well as he various methods to analyze the achievements and limitations of the end result.