Density
functional theory (DFT) calculations with a dispersion
force correction under periodic boundary conditions have been applied
to two kinds of crystalline forms of poly(methylene oxide) (PMO):
trigonal lattice with a 9/5 helical chain (t-PMO) and orthorhombic
lattice with two 2/1 helical chains (o-PMO). The following computational
results were derived: optimized structure (lattice constants and atomic
coordinates), interchain cohesive energy, infrared spectrum, thermodynamic
functions, orthorhombic-to-trigonal transition temperature, and crystalline
modulus. The DFT calculations reproduced the experimental polymorphic
transition at 69 °C, and the evaluated elastic modulus of trigonal
PMO lies within close range to the experimental values. This study
has demonstrated that the advanced computational chemistry supplies
reliable and quantitative information on polymer crystals.