This study deals with the combined effects of Navier Slip, Convective cooling, variable viscosity, and suction/injection on the entropy generation rate in an unsteady flow of an incompressible viscous fluid flowing through a channel with permeable walls. The model equations for momentum and energy balance are solved numerically using semi-discretization finite difference techniques. Both the velocity and temperature profiles are obtained and utilized to compute the entropy generation number. The effects of key parameters on the fluid velocity, temperature, entropy generation rate and Bejan number are depicted graphically and analyzed in detail.