Functional materials are widely used in chemical industry in order to reduce the process cost while simultaneously increase the product quality. Considering their significant effects, systematic methods for the optimal selection and design of materials are essential. The conventional synthesis-and-test method for materials development is inefficient and costly. Additionally, the performance of the resulting materials is usually limited by the designer’s expertise. During the past few decades, computational methods have been significantly developed and they now become a very important tool for the optimal design of functional materials for various chemical processes. This article selectively focuses on two important process functional materials, namely heterogeneous catalyst and gas separation agent. Theoretical methods and representative works for computational screening and design of these materials are reviewed.