The protection against the unintentional islanding of Grid-Tied inverters is an important electrical security issue addressed by the main Standards. This concern is justified in face of the fact that unintentional islanding can lead to abrupt variations of voltage and frequency, electrical damages, professional accidents, power quality degradation, and out-of-phase reclosure. In response to the islanding concern, the literature has proposed several Anti-Islanding Protection (AIP) schemes that can be divided in passive and active methods. Many of the active AIP is based on the insertion of some disturbance in the inverter current in order to deviate the frequency out of the allowed thresholds, tripping the inverter internal disconnection system. Thus, the main objective of this paper is to analyze the performance of the Active Phase Jump with Positive Feedback (APJPF) algorithm compared to other well-known frequency drift-based solutions. More than that, this work covers the Non-Detection Zone (NDZ) problem, analyzing its main mapping methodologies and the normative requirements, exposing the minimum normative recommendations a given AIP must reach to be considered functional. The last contributions of this paper are the proposal of a parametrization criterion for the Active Frequency Drift with Pulsating Chopping Factor (AFDPCF) and for the APJPF.