Variational wave functions have been a successful tool to investigate the properties of quantum spin liquids. Finding their parent Hamiltonians is of primary interest for the experimental simulation of these strongly correlated phases, and for gathering additional insights on their stability. In this work, we systematically reconstruct approximate spin-chain parent Hamiltonians for Jastrow-Gutzwiller wave functions, which share several features with quantum spin liquid wave-functions in two dimensions. Firstly, we determine the different phases encoded in the parameter space through their correlation functions and entanglement content. Secondly, we apply a recently proposed entanglement-guided method to reconstruct parent Hamiltonians to these states, which constrains the search to operators describing relativistic low-energy field theories -as expected for deconfined phases of gauge theories relevant to quantum spin liquids. The quality of the results is discussed using different quantities and comparing to exactly known parent Hamiltonians at specific points in parameter space. Our findings provide guiding principles for experimental Hamiltonian engineering of this class of states.