This paper builds on the Helicopter Multi-Block version 2 CFD solver of the University of Liverpool and demonstrates the implementation and use of Gurney flaps on wings, and rotors. The idea is to flag any cell face within the computational mesh with a solid, no slip boundary condition. Hence the infinitely thin Gurney can be approximated by "blocking cells" in the mesh. Comparison between thick Gurney flaps and infinitely thin Gurneys showed no difference on the integrated loads, the same flow structure was captured and the same vortices were identified ahead and behind the Gurney. The results presented for various test cases suggest that the method is simple and efficient and it can therefore be used for routine analysis of rotors with Gurney flaps. Moreover, the current method adds to the flexibility of the solver since no special grids are required and Gurney flaps can be easily implemented. Simple 2D aerofoil, 3D wing, and rotors in hover and forward flight were tested with fixed, linearly actuated, and swinging Gurneys, and the ability of the code to deploy a Gurney flap within the multiblock mesh is highlighted.