2023
DOI: 10.21203/rs.3.rs-2773503/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Computational modeling and synthesis of Pyridine variants of Benzoyl-Phenoxy-Acetamide with high glioblastoma cytotoxicity and brain tumor penetration

Abstract: Glioblastomas are highly aggressive brain tumors for which therapeutic options are very limited. In a quest for new anti-glioblastoma drugs, we focused on specific structural modifications of benzoyl-phenoxy-acetamide (BPA) present in a common lipid-lowering drug, fenofibrate, and in our first prototype glioblastoma drug, PP1. Here, we propose extensive computational analyses to improve selection of the most effective glioblastoma drug candidates. Initially over 100 structural BPA variations were analyzed and … Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 56 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?