Background: Coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is now a pandemic which began in Wuhan province of China. Drug discovery teams around the globe are in a race to develop a medicine for its management. For a novel molecule to enter into the market it takes time and the ideal way is to exploit the already approved drugs and repurpose them to use therapeutically.Methods: In this work, we have attempted to screen selected molecules that have shown an affinity towards multiple protein targets of COVID-19 using Schrödinger suit. Molecules were selected from approved antiviral, anti-inflammatory or immunomodulatory classes. The viral proteins selected were angiotensin-converting enzyme 2 (ACE2), main protease (Mpro) and spike protein. Computational tools such as molecular docking, prime MM-GBSA, induced-fit docking (IFD) and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins.Results: The ligand-binding stability for the viral proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro) and 6M1D (ACE2), was in the order of Nintedanib>Quercetin, Nintedanib>Darunavir, Nintedanib> Baricitinib respectively. The MM-GBSA, IFD, and MD simulation studies infer that the drug nintedanib has the highest binding stability among the shortlisted molecules towards the selected viral target proteins. Conclusion: Nintedanib, which is primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing and used in the management of COVID-19.