This study investigates the design and potential failure modes of a marine propeller shaft using computational and analytical methods. The aim is to assess the structural integrity of the existing design and propose modifications for improved reliability and service life. Analytical calculations based on classification society rules determined acceptable shaft diameter ranges, considering torsional shear stress limits for SAE 1030 steel. A Campbell diagram analysis identified potential resonance issues at propeller blade excitation frequencies, leading to a recommended operating speed reduction for a safety margin. Support spacing was determined using both the Ship Vibration Design Guide and an empirical method, with the former yielding more conservative results. Finite element analysis, focusing on the keyway area, revealed stress concentrations approaching the material’s ultimate strength. A mesh sensitivity analysis ensured accurate stress predictions. A round-ended rectangular key geometry modification showed a significant stress reduction. Fatigue life analysis using the Goodman equation, incorporating various factors, predicted infinite life under different loading conditions, but varying safety factors highlighted the impact of these conditions. The FEA revealed that the original keyway design led to stress concentrations exceeding allowable limits, correlating with potential shaft failure. The proposed round-ended rectangular key geometry significantly reduced stress, mitigating the risk of fatigue crack initiation. This research contributes to the development of more reliable marine propulsion systems by demonstrating the efficacy of integrating analytical methods, finite element simulations, and fatigue life predictions in the design process.