Multiscale methods
combining quantum mechanics and molecular mechanics
(QM/MM) have become the most suitable and effective strategies for
the investigation of the spectroscopic properties of medium-to-large
size chromophores in condensed phases. In this context, we are developing
a novel workflow aimed at improving the generality, reliability, and
ease of use of the available computational tools. In this paper, we
report our latest developments with specific reference to a general
protocol based on atomistic simulations, carried out under nonperiodic
boundary conditions (NPBC). In particular, we add to our in house
MD engine a new efficient treatment of mean field electrostatic contributions
to energy and forces, together with the capability of performing the
simulations either in the canonical (
NVT
) or in the
isothermal–isobaric (
NPT
) ensemble. Next,
we provide convincing evidence that the NBPC approach enhanced by
specific tweaks for rigid body propagation, allows for the simulation
of solute–solvent systems with a minimum number of degrees
of freedom and large integration time step. After its validation,
this new approach is applied to the challenging case of solvatochromic
effects on the electron paramagnetic resonance (EPR) spectrum of a
prototypical nitroxide radical. To this end, we propose and validate
also an automated protocol to extract and weight simulation snapshots,
making use of a continuous description of the strength of solute–solvent
hydrogen bridges. While further developments are being worked on,
the effectiveness of our approach, even in its present form, is demonstrated
by the accuracy of the results obtained through an unsupervised approach
characterized by a strongly reduced computational cost as compared
to that of conventional QM/MM models, without any appreciable deterioration
of accuracy.