The new paradigm in the assessment of toxicity of nanomaterials relies on a mechanistic understanding of the organism's response to an exposure to foreign materials from the initial, molecular level interactions to signaling and regulatory cascades. Here, we present a methodology to quantify the essential interactions at the bionano interface, which can be used in combination with the adverse outcome pathway analysis to build mechanism-based predictive schemes for toxicity assessments. We introduce a set of new, advanced descriptors of the nanomaterials, which refer to their ability to bind biomolecules and trigger the pathways via the molecular initiating events.