Structure-property relationships model the ultrahigh-performance liquid chromatographic retention times of tea compounds. Bioplastic evolution presents a viewpoint in evolutionary science. It conjugates the result of acquired characters and associations rising between three rules: evolutionary indeterminacy, morphological determination,andnatural selection. It is used to propose the coordination index, which is utilized to describe the retentions of tea constituents. In molecules, three properties allow computing the coordination descriptor: the molar formation enthalpy, molecular weight, and surface area. The result of dissimilar kinds of characteristics is examined: thermodynamic, steric, geometric, lipophilic, etc. The features are molar formation enthalpy, molecular weight, hydrophobic solvent-accessible surface area, decimal logarithm of the 1-octanol/water partition coefficient, etc. in linear and quadratic associations. The formation enthalpy, molecular weight, hydrophobic surface, partition, etc. differentiate the molecular structures of tea components. Feeble quadratic associations result between partition, hydrophobic surface and retention. The morphological and coordination descriptors complete the associations.