Background: Dilated cardiomyopathy (DCM) is a non-ischaemic cardiac muscle disease with structural and functional myocardial aberration can lead to extensive morbidity and mortality due to complications in particular heart failure and arrhythmia. Two classic Chinese medicine formulas, Shenfu decoction and Linguizhugan decoction, were both shown to exert therapeutic effects on heart disease. Thus, modified Shenfu and Linguizhugan decoction (SFLGZGD) is recommended for treatment DCM. However, its chemical and pharmacological characteristics remain to be elucidated. In the current study, a network pharmacology approach was applied to characterize the action mechanism and target genes of SFLGZGD on DCM.Methods: The gene expression of DCM was obtained from the Gene Expression Omnibus (GEO). All compounds were obtained from the correlative databases, and active mixture were selected according to their oral bioavailability (OB) and drug-likeness (DL) index. The potential targets of SFLGZGD were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database. The compound-target and target-pathway networks were constructed. The protein-protein interactive (PPI) network generated by R software was visualized by Cytoscape, and the topology scores, functional regions, and gene annotations were analyzed using plugins of Bisogenet and CytoNCA. The potential pathways related to target genes were determined by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.Results: A total of 963 differentially expressed genes (DEGs), including 538 upregulated genes and 425 downregulated, were obtained from GSE19303. A total of 636 ingredients in SFLGZGD were obtained, among which, 93 were chosen as bioactive components. The compound-target network included 10 bioactive components and 18 potential targets and a total of 1939 genes obtained in the PPI network, among them, a total of 16 genes were screened out. Moreover,129 terms on the GO analysis and six pathways obtained. Among these potential targets, EGFR, CDKN1A, MMP1, COL1A1, COL3A1, MMP3, ICAM1, and HSPB1 were identified as relatively high-degree targets.Conclusions: The network pharmacology-based approach in the current study has shown promising potential in identifying major therapeutic targets from TCM formulations. Besides, our study suggested that network pharmacology prediction may provide a useful tool for describing the molecular mechanism of SFLGZGD on DCM.