2022
DOI: 10.26434/chemrxiv-2022-gw1n3
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models

Abstract: Efficient methods for searching the chemical space of molecular compounds are needed to automate and accelerate the design of new functional molecules such as pharmaceuticals. Given the high cost in both resources and time for experimental efforts, computational approaches play a key role in guiding the selection of promising molecules for further investigation. Here, we construct a workflow to accelerate design by combining approximate quantum chemical methods [i.e. density-functional tight-binding (DFTB)], a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?