Computed Tomography Artefact Detection Using Deep Learning—Towards Automated Quality Assurance
S. I. Inkinen,
A. O. Kotiaho,
M. Hanni
et al.
Abstract:Image artefacts in computed tomography (CT) limit the diagnostic quality of the images. The objective of this proof-of-concept study was to apply deep learning (DL) for automated CT artefact classification. Openly available Head CT data from Johns Hopkins University was used. Three common artefacts (patient movement, beam hardening, and ring artefacts (RAs)) and artefact free images were simulated using 2D axial slices. Simulated data were split into a training set (Ntrain = 1040 × 4(4160)), two validation set… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.