The venous anatomy of the two-toed sloth (Choloepus didactylus) remains poorly understood, particularly in living specimens due to the limitations of traditional cadaveric studies. This study aims to describe the unique venous structures of Choloepus didactylus using computed tomography, enhancing our understanding of this species in a live setting. Three living Choloepus didactylus underwent CT scans as part of routine clinical assessments. The images were reconstructed using 3D Slicer software (version 5.6.2), focusing on the caudal vena cava anatomy. The reconstructions confirmed the presence of a significant intravertebral vein, showing complex venous connections through the ventral sacral foramen and vertebral foramina. These findings highlight notable anatomical variations and challenge existing literature on the species’ venous architecture. By employing modern imaging technologies, this research provides new insights into the venous anatomy of Choloepus didactylus, demonstrating the value of non-invasive techniques in studying the anatomical features of live animals, thereby offering a foundation for further comparative and evolutionary studies.