Although many semi-automated and automated algorithms for breast density assessment have been recently proposed, none of these have been widely accepted. In this study a novel automated algorithm, named iDensity, inspired by the human visual system is proposed for classifying mammograms into four breast density categories corresponding to the Breast Imaging Reporting and Data System (BI-RADS). For each BI-RADS category 80 cases were taken from the normal volumes of the Digital Database for Screening Mammography (DDSM). For each case only the left mediolateral oblique was utilized. After image calibration using the provided tables of each scanner in the DDSM, the pectoral muscle and background were removed. Images were filtered by a median filter and down sampled. Images were then filtered by a filter bank consisting of Gabor filters in six orientations and 3 scales, as well as a Gaussian filter. Three gray level histogrambased features and three second order statistics features were extracted from each filtered image. Using the extracted features, mammograms were separated initially separated into two groups, low or high density, then in a second stage, the low density group was subdivided into BI-RADS I or II, and the high density group into BI-RADS III or IV. The algorithm achieved a sensitivity of 95% and specificity of 94% in the first stage, sensitivity of 89% and specificity of 95% when classifying BI-RADS I and II cases, and a sensitivity of 88% and 91% specificity when classifying BI-RADS III and IV.