Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background and Hypothesis Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. Study Design The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. Study Results Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. Conclusions We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
Background and Hypothesis Schizophrenia (SZ) is characterized by significant cognitive and behavioral disruptions. Neuroimaging techniques, particularly magnetic resonance imaging (MRI), have been widely utilized to investigate biomarkers of SZ, distinguish SZ from healthy conditions or other mental disorders, and explore biotypes within SZ or across SZ and other mental disorders, which aim to promote the accurate diagnosis of SZ. In China, research on SZ using MRI has grown considerably in recent years. Study Design The article reviews advanced neuroimaging and artificial intelligence (AI) methods using single-modal or multimodal MRI to reveal the mechanism of SZ and promote accurate diagnosis of SZ, with a particular emphasis on the achievements made by Chinese scholars around the past decade. Study Results Our article focuses on the methods for capturing subtle brain functional and structural properties from the high-dimensional MRI data, the multimodal fusion and feature selection methods for obtaining important and sparse neuroimaging features, the supervised statistical analysis and classification for distinguishing disorders, and the unsupervised clustering and semi-supervised learning methods for identifying neuroimage-based biotypes. Crucially, our article highlights the characteristics of each method and underscores the interconnections among various approaches regarding biomarker extraction and neuroimage-based diagnosis, which is beneficial not only for comprehending SZ but also for exploring other mental disorders. Conclusions We offer a valuable review of advanced neuroimage analysis and AI methods primarily focused on SZ research by Chinese scholars, aiming to promote the diagnosis, treatment, and prevention of SZ, as well as other mental disorders, both within China and internationally.
No abstract
Schizophrenia, a highly complex psychiatric disorder, presents significant challenges in diagnosis and treatment due to its multifaceted neurobiological underpinnings. Recent advancements in functional magnetic resonance imaging (fMRI) and artificial intelligence (AI) have revolutionized the understanding and management of this condition. This manuscript explores how the integration of these technologies has unveiled key insights into schizophrenia’s structural and functional neural anomalies. fMRI research highlights disruptions in crucial brain regions like the prefrontal cortex and hippocampus, alongside impaired connectivity within networks such as the default mode network (DMN). These alterations correlate with the cognitive deficits and emotional dysregulation characteristic of schizophrenia. AI techniques, including machine learning (ML) and deep learning (DL), have enhanced the detection and analysis of these complex patterns, surpassing traditional methods in precision. Algorithms such as support vector machines (SVMs) and Vision Transformers (ViTs) have proven particularly effective in identifying biomarkers and aiding early diagnosis. Despite these advancements, challenges such as variability in methodologies and the disorder’s heterogeneity persist, necessitating large-scale, collaborative studies for clinical translation. Moreover, ethical considerations surrounding data integrity, algorithmic transparency, and patient individuality must guide AI’s integration into psychiatry. Looking ahead, AI-augmented fMRI holds promise for tailoring personalized interventions, addressing unique neural dysfunctions, and improving therapeutic outcomes for individuals with schizophrenia. This convergence of neuroimaging and computational innovation heralds a transformative era in precision psychiatry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.