Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This review paper investigates the utilization of Convolutional Neural Networks (CNNs) for disease detection in potato agriculture, highlighting their pivotal role in efficiently analyzing large-scale agricultural datasets. The datasets used, preprocessing methodologies applied, specific data collection zones, and the efficacy of prominent algorithms like ResNet, VGG, and MobileNet variants for disease classification are scrutinized. Additionally, various hyperparameter optimization techniques such as grid search, random search, genetic algorithms, and Bayesian optimization are examined, and their impact on model performance is assessed. Challenges including dataset scarcity, variability in disease symptoms, and the generalization of models across diverse environmental conditions are addressed in the discussion section. Opportunities for advancing CNN-based disease detection, including the integration of multi-spectral imaging and remote sensing data, and the implementation of federated learning for collaborative model training, are explored. Future directions propose research into robust transfer learning techniques and the deployment of CNNs in real-time monitoring systems for proactive disease management in potato agriculture. Current knowledge is consolidated, research gaps are identified, and avenues for future research in CNN-based disease detection strategies to sustain potato farming effectively are proposed by this review. This study paves the way for future advancements in AI-driven disease detection, potentially revolutionizing agricultural practices and enhancing food security. Also, it aims to guide future research and development efforts in CNN-based disease detection for potato agriculture, potentially leading to improved crop management practices, increased yields, and enhanced food security.
This review paper investigates the utilization of Convolutional Neural Networks (CNNs) for disease detection in potato agriculture, highlighting their pivotal role in efficiently analyzing large-scale agricultural datasets. The datasets used, preprocessing methodologies applied, specific data collection zones, and the efficacy of prominent algorithms like ResNet, VGG, and MobileNet variants for disease classification are scrutinized. Additionally, various hyperparameter optimization techniques such as grid search, random search, genetic algorithms, and Bayesian optimization are examined, and their impact on model performance is assessed. Challenges including dataset scarcity, variability in disease symptoms, and the generalization of models across diverse environmental conditions are addressed in the discussion section. Opportunities for advancing CNN-based disease detection, including the integration of multi-spectral imaging and remote sensing data, and the implementation of federated learning for collaborative model training, are explored. Future directions propose research into robust transfer learning techniques and the deployment of CNNs in real-time monitoring systems for proactive disease management in potato agriculture. Current knowledge is consolidated, research gaps are identified, and avenues for future research in CNN-based disease detection strategies to sustain potato farming effectively are proposed by this review. This study paves the way for future advancements in AI-driven disease detection, potentially revolutionizing agricultural practices and enhancing food security. Also, it aims to guide future research and development efforts in CNN-based disease detection for potato agriculture, potentially leading to improved crop management practices, increased yields, and enhanced food security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.