Results from a multicomponent Monte Carlo simulation of the deposition and growth of YBa2Cu3O7 are presented and discussed. In particular, a detailed examination of the growth modes active during different morphological growth conditions is performed. At higher deposition rates, both [001] and [100] epitaxial variants (‘c’ and ‘a’ type growth, respectively) are observed to grow by modes attributed to the classic Volmer-Weber mechanism. At very low deposition rates, the film is observed to grow in a distinct, cyclic, multi-stage process. Small islands of [001] epitaxy nucleate and grow to one unit cell height followed by primarily horizontal growth or “ledge extension” until one unit cell layer has formed. This process then repeats. Simulated RHEED amplitude data from this growth process compares favorably to experimentally obtained data.