Background
Changes in autonomic control cause regular breathing during NREM sleep to fluctuate during REM. Piezoelectric cage-floor sensors have been used to successfully discriminate sleep and wake states in mice based on signal features related to respiration and other movements. This study presents a classifier for noninvasively classifying REM and NREM using a piezoelectric sensor.
New Method
Vigilance state was scored manually in 4-second epochs for 24-hour EEG/EMG recordings in twenty mice. An unsupervised classifier clustered piezoelectric signal features quantifying movement and respiration into three states: one active; and two inactive with regular and irregular breathing respectively. These states were hypothesized to correspond to Wake, NREM, and REM respectively. States predicted by the classifier were compared against manual EEG/EMG scores to test this hypothesis.
Results
Using only piezoelectric signal features, an unsupervised classifier distinguished Wake with high (89% sensitivity, 96% specificity) and REM with moderate (73% sensitivity, 75% specificity) accuracy, but NREM with poor sensitivity (51%) and high specificity (96%). The classifier sometimes confused light NREM sleep—characterized by irregular breathing and moderate delta EEG power—with REM. A supervised classifier improved sensitivities to 90, 81, and 67% and all specificities to over 90% for Wake, NREM, and REM respectively.
Comparison with Existing Methods
Unlike most actigraphic techniques, which only differentiate sleep from wake, the proposed piezoelectric method further dissects sleep based on breathing regularity into states strongly correlated with REM and NREM.
Conclusions
This approach could facilitate large-sample screening for genes influencing different sleep traits, besides drug studies or other manipulations.