The work demonstrated the microstructure and the relaxation behavior of flexible electroactive blends of poly(vinylidene fluoride) (PVDF)/hydrogenated nitrile rubber (HNBR) by small‐angle X‐ray scattering and dielectric relaxation spectroscopy. Very few studies have been done so far on this topic for crystalline/rubbery blends. Lamellar morphology was observed for both the PVDF and its blends. HNBR suppressed the mobility of PVDF above its melting temperature, as evident from lowering of crystallization temperature, due to physical interaction. The interaction was increased with HNBR content. However, after complete crystallization, HNBR segments were expelled out from the lamella, and crystal long period remained intact in all the blends. Interestingly, some HNBR segments remained in the amorphous part of PVDF which reduced the electron density contrast of its crystalline and amorphous region. When HNBR was crosslinked, the interaction was reduced, and consequently, the crystallization became faster and electron density contrast increased. From the microscopic study, polydispersed particles were observed within the crystalline lamella. Interfacial polarization (IP) relaxation of PVDF was absent in the blends due to physical interaction, whereas IP relaxation of HNBR shifted to a higher frequency. The shift was higher at higher HNBR content and decreased when HNBR was crosslinked. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 851–866