Aiming at the problem of automatic path planning for the whole safflower bulbs during the operation of safflower picking robots, an improved ant colony algorithm (ACA) was proposed to plan the three-dimensional path of the safflower picking points. The shortest time and distance were taken as the overall goal of path planning to comprehensively improve the working efficiency of safflower picking robots. First, in order to shorten time, the angle induction factor was introduced to reduce the angle rotation of the end-effector. Second, in order to shorten the length of the picking path, the picking track was optimized. Finally, the design of the secondary path optimization reduced the number of picking points, which not only shortened the length of the picking path, but also shortened the picking time. The simulation results show that the path planned by the improved ACA was reduced by three picking points, shortening the total length by 74.32%, and reducing the picking time by 0.957 s. The simulation results verify the feasibility of the improved ACA for safflower picking path planning, which provides theoretical reference and technical support for the picking path planning of dual roller safflower picking robots.