All propeller-driven ships employ a drive shaft supported by journal bearings. To avoid water pollution, these bearings are generally lubricated by the surrounding water, removing the need for a rear seal. Such bearings, commonly referred to as Cutlass bearings, usually have an inner grooved nitrile rubber lining. The grooves (called flutes) allow debris to be flushed out and the bearing surface to be cooled. The remaining area is divided into a number of load-carrying areas called staves. At present, no rigorous design guide exists for these bearings. This paper presents a methodology to predict the minimum film thickness between the journal and the most heavily-loaded stave, an approach not hitherto reported in the literature. The method includes a new, 3D, finite element (FE) approach for soft elasto-hydrodynamic (EHL) predictive modelling of generated pressures in cutlass bearings. Model predictions compare favourably with experimental data. It is shown that the modulus of elasticity of the rubber has no influence on the minimum film thickness. An equation relating dimensionless film thickness to dimensionless load, clearance ratio and numbers of staves is presented. For a nominally circular bearing, increasing the clearance ratio or increasing the numbers of staves reduces load-carrying capacity. It is shown that distortion due to loading can increase load-carrying capacity.